
CUSTE NINIWPOLIS U J D 1 CMIN ET AL LM0

ULMMIISIFIEV F/9 124 i

IIIII-g

S n-8

om -

nC, -FILE -CUP.)

0RATIONALE

IN FOR THE DESIGN OF THEN

00
Ada R.

PROGRAMMING LANGUAGE

DTIC
~LECT" 7-

Jean D. Ichbiah C -
John G.P. Barnes OCT 2 9 987j"

Robert J. Firth
Mike Woodger

HONEYWELL
Systems and Research Center

MN65-2100
3660 Technology Drive

. , Minneapolis,. MN 55418

and

ALSYS
29 Avenue de Versailles

78170 La Celle Saint Cloud
France

R Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

Y... . . " .'Di':tr irn d .. .

Approved for l.uic p z'-.
.:

'*.'. " .r :". ~~Di~qributi Un l . m e' Tin;i,- ,.. . . .

0000..

Copyright 1986, owned by the United States Government as represented by the Under
Secretary of Defense. Research and Engineering. All rights reserved. Permission to publish
-nust be o2btained from the Ada Joint Pr-ogram Office. OTUSDRE(R&ATI. T~t', P-'?uaqP?z.
Tashin.-ton. D.C. 20301, U.S.A.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WhenDatantered) 46/ 6

REPORT DOCUMENTATION PAGE READIRUONSBEFORE COMPLETEING FORM
1. REPORT NUMBER j2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Rationale for the Design of the Ada 1986
Programming Language

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORs) 8. CONTRACT OR GRANT NUMBER(s)
Jean D. Ichbiah; John G.P.Barnes; Robert J.
Firth; and Mike Woodger

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Honeywell Systems and Research Center, NB65-2100, 3660 AREA & WORK UNIT NUMBERS

Technology Dr., Minneapolic, MN 55418, and ALSYS, 29
Ave. de Versailles, 78170 La Celle St. Cloud, France

II,.jONaRQLLINLG OFFICE NAFUND ADDRESS 12. REPORT DATE
A a doint rogram Office 1986
United States-De artment of Defense 13. NUMBER oF PAItS

Washington, DC 20301-3081 393

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Ada Joint Program Office UNCLASSIFIED

15a. R I 8jFICATIONDOWNGRADING

N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, ANSI/MIL-STD-1815A, Ada Joint Program Office,
AJPO

20 ABSTRACT (Continue on reverse sid , nercssaW and ,errity by Nock number)

See Attached.

DO u" 1473 EDITION Or I NOV 65 IS OeSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

>. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

RATIONALE

FOR THE DESIGN OF THE

AdaR

PROGRAMMING LANGUAGE

Jean D. Ichbiah
John G.P. Barnes

Robert J. Firth r
Mike Woodger ftia

HONEYWELLr ,q vx

Systems and Research Center
MN65-2100

3660 Technology Drive . . -

Minneapolis, MN 55418 .;,,

and ., ..,-,-..,., -

ALSYS "
29 Avenue de Versailles

78170 La Celle Saint Cloud
France

R Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

I II

Copyright C 1986 owned by the United States Government as represented by the Under
Secretary of Defense, Research and Engineering. All rights reserved. Permission to publish
must be obtained from the Ada Joint Program Office. OUSDRE(R&AT). The Pentagon.
Washington, D.C. 20301, U.S.A.

Table of Contents

1 Introduction and Preface

1.1 Goals 1
1.2 Structure 2
1.3 Acknowledgements 2

2 Lexical and Textual Structure

2.1 Lexical Structure 5
2.2 Textual Structure 9

3 Classical Programming

3.1 Simple Declarations: Variables and Constants 17
3.2 Declarative Parts - Linear Reading 18
3.3 Multiple Declarations 20
3.4 Names 22
3.5 Aggregates 23
3.6 Expressions 25
3.7 Statements 27
3.8 Assignment Statements - The Ada Model of Time 27
3.9 If Statements 30
3.10 Short-Circuit Control Forms 30
3.11 Case Statements 31
3.12 Loop Statements 35

III

4 Types

4.1 Introduction 37
4.2 The Concept of Type 40
4.3 Type Equivalence 42
4.4 Constraints and Subtypes 44
4.4.1 Constraints 44
4.4.2 Subtypes 45
4.4.3 Evaluation of Constraints 46
4.5 Array Types 48
4.5.1 Slices and Sliding 50
4.5.2 Array Aggregates 54
4.5.3 Equivalence and Explicit Conversions 58
4.6 Record Types 61
4.6.1 Equivalence 62
4.6.2 Default Initialization of Record Components 63
4.7 Discriminants 65
4.7.1 Record Types with Variants 65
4.7.2 Discriminant Constraints - Record Subtypes 67
4.7.3 Denoting Components of Variants 68
4.7.4 Initialization of Discriminants 70
4.7.5 Discriminants and Type Composition 72
4.8 Mutability 76
4.8.1 The Case Against Static Mutability 78
4.8.2 Implementation Considerations 82

5 Numeric Types

5.1 Introduction 85
5.1.1 Floating Point The Problems 85
5.1.2 Fixed Point. The Problems 86
5.1.3 Overview of Numerics in Ada 88
5.2 The Integer Types 91
5.3 The Real Types 92
5.3.1 Floating Point Types 94
5.3.2 Fixed Point Types 97
5.3.3 A Semantic Model for Approximate Computation 102
5.4 Implementation Considerations 105
5.5 Conclusion 108

IV

6 Access Types

6.1 Introduction 109
6.2 Overview of the Issues 109
6.2.1 Conceptual Aspects 109
6.2.2 Reliability, Efficiency, and Implementation Issues 112
6.2.3 Goals for a Formulation of Access Types 114
6.3 Presentation of Access Types 115
6.3.1 Declaration of Access Types and Subtypes 115
6.3.2 Collections of Dynamically Allocated Objects 116
6.3.3 Access Variables, Allocators, and Access Constants 117
6.3.4 Component Selection, Indexed Components, and Value Assignments 119
6.3.5 Recursive Access Types 120
6.3.6 Access Objects as Parameters 122
6.3.7 Storage Management for Access Types 123

7 Derived Types

7.1 Introduction 125
7.2 Informal Introduction to Derived Types 126
7.3 Simple Strong Typing 131
7.4 The Explanation of Numeric Types 140
7.5 The Ability to Inherit Literals 140
7.6 The Construction of Private Types 141
7.7 Achieving Transitivity of Visibility 143
7.8 Change of Representation 146
7.9 Conclusion - Achieving Copies in Ada 149

8 Subprograms

8.1 Subprogram Declarations and Subprogram Bodies 153
8.2 Parameter Modes 154
8.2.1 Efficiency Issues of Parameter Passing Mechanisms 155
8.2.2 The Effect of Parameter Passing Mechanisms for Access Types 157
8.2.3 The Effect of Parameter Passing Mechanisms for Composite Types 158
8.2.4 The Ada Solution for Parameter Passing 162
8.3 Parameter Passing Notations 164
8.4 Function Subprograms 166

V

9 Packages

9.1 Motivation 169
9.2 Informal Introduction to Packages 170
9.2.1 Named Collections of Entities 171
9.2.2 Groups of Related Subprograms 173
9.2.3 Private Types 177
9.3 Technical Issues 180
9.3.1 Visibility Control and Information Hiding 181
9.3.2 Guaranteeing Software Components 182
9.3.3 Influence of Separate Compilation on the Design of Packages 183
9.3.4 Initialization of Packages 184
9.3.5 Note on Visibility 184
9.3.6 Availability of the Properties of Types Defined Within Packages 186
9.3.7 Initialization of Objects of Private Types 187
9.3.8 Private Types with Discriminants 188
9.4 Summary and Conclusion 190

10 Separate Compilation and Libraries

10.1 Introduction 191
10.2 Presentation of the Separate Compilation Facility 192
10.2.1 Bottom-Up Program Development 193
10.2.2 Hierarchical Program Development 196
10.2.3 Compilation Order 199
10.2.4 Recompilation Order 200
10.2.5 Execution of a Main Program 202
10.2.6 The Pragma ELABORATE 202
10.3 Methodological Impact of Separate Compilation 203
10.4 The Program Library 204
10.5 The Implementation of Separate Compilation 206
10.5.1 Principle of Separate Compilation 206
10.5.2 Details of the Actions Performed by the Compiler 207
10.5.3 Treatment of Package Bodies 209
10.5.4 Summary of the Information Contained in a Library File 209
10.6 Summary and Conclusion 210

11 General Program Structure - Visibility and Overloading

11.1 Introduction 213
11.2 Program Structure 213
11.3 Visibility Rules 216
11.3.1 Basic Visibility Model 216
11.3.2 Naming Conventions: Expanded Names and Use Clauses 219
11.3.3 Visibility Rules for Record Types 221

VI

11.3.4 Renaming 222
11.4 Overloading 224
11.4.1 Overloading of Operators 224
11.4.2 Overloading of Names 226
11.4.3 Overloading of Literals 227
11.5 Overload Resolution 230
11.5.1 Context of Overload Resolution 231
11.5.2 Information Used to Resolve Overloading 232
11.5.3 Ambiguity 234

12 Generic Units

12.1 Introduction 235
12.2 Informal Presentation of Generic Units 237
12.2.1 Generic Formal Parts 237
12.2.2 Generic Instantiations 238
12.2.3 Private Types as Generic Formal Types 240
12.2.4 Other Forms of Generic Formal Types 241
12.2.5 Default Parameters 246
12.3 The Use of Generic Units 247
12.3.1 Examples of Generic Functions 247
12.3.2 An Example of a Generic Package 250
12.3.3 A Generic Package with Tasks 254
12.3.4 A More Complicated Example 256
12.4 Rationale for the Formulation of Generic Units 261
12.4.1 Explicit Instantiation of Generic Units 261
12.4.2 Generic Formal Parameters: The Contract Model 263
12.4.3 Default Generic Parameters 267

13 Tasking

13.1 Introduction 269
13.2 Presentation of the Tasking Facility 270
13.2.1 Tasks: Textual Layout 270
13.2.2 Task Execution 271
13.2.3 Visibility Rules 275
13.2.4 Entries and the Accept Statement 275
13.2.5 The Select Statement 278
13.2.6 Timing 285
13.2.7 Timed and Conditional Communication 287
13.2.8 Interrupts 289
13.2.9 Task Types 289
13.2.10 The Terminate Alternative 293
13.2.11 Families of Entries and Scheduling 294
13.3 Rationale for the Design of the Rendezvous Facilities 303

VII

13.3.1 Early Primitives 303
13.3.2 The Rendezvous Concept 306
13.4 Packages and Tasks 310

14 Exception Handling

14.1 Introduction 311
14.2 Presentation of Exception Handling in Ada 312
14.2.1 Declaration of Exceptions 312
14.2.2 Exception Handlers 311
14.2.3 The Raise Statement 314
14.2.4 Association of Handlers with Exceptions 314
14.2.5 Raising the Same Exception Again 317
14.2.6 Suppressing Checks 317
14.2.7 Order of Exceptions 317
14.3 Examples 318
14.3.1 Matrix Inversion 318
14.3.2 Division 320
14.3.3 A File Example 321
14.3.4 A Package Example 322
14.3.5 Example of Last Wishes 323
14.4 Tasks and Exceptions 325
14.4.1 Exceptions During Task Activation 325
14.4.2 Exceptions Raised During Communication Between Task 326
14.4.3 Abnormal Situations in an Accept Statement 327
14.4.4 Example of Exceptions in a Rendezvous 329
14.5 Technical Issues 331
14.5.1 Exceptions Raised During the Elaboration of Declarations 332
14.5.2 Propagation of an Exception Beyond its Scope 332
14.5.3 Suppression of Checks 334
14.5.4 Implementation of Exception Handling 335
14.5.5 The Case Against Asynchronous Exceptions 336
14.5.6 Proving Programs with Exceptions 336

15 Representation Clauses and Machine Dependences

15.1 The Separation Principle 339
15.2 Types and Data Representation 340
15.3 Multiple Representations and Change of Representation 341
15.3.1 A Canonical Example of Changes of Representation 341
15.3.2 One Type - One Representation Principle 342
15.3.3 Explicit Type Conversion and Change of Representation 343
15.3.4 Implementation of Representation Changes 345
15.4 Presentation of the Data Representation Facility 346
15.4.1 Representation Pragmas 346

VIII

15.4.2 Length Clauses 346
15.4.3 Record Representation Clauses 348
15.4.4 Address Clauses 350
15.4.5 Enumeration Representation Clauses 350
15.5 Enumeration Types with Noncontiguous Representations 351
15.5.1 Assignment and Comparison with Noncontiguous Enumeration Types 351
15.5.2 Indexing and Case Statements with Noncontiguous Enumeration Types 352
15.5.3 Iteration Over Noncontiguous Enumeration Types 352
15.5.4 Character Types 353
15.6 Configuration Specification and Environment Enquiries 354
15.6.1 The Package System 354
15.6.2 Pragmas for Configuration Specification 356
15.6.3 Representation Attributes 356
15.6.4 Configuration Specification and Conditional Compilation 357
15.7 Interface with Other Languages 357
15.8 Unchecked Conversions 360

16 Input-Output. --

16.1 Introduction 363
16.2 Basic Requirements 364
16.3 Designation of Files 365
16.3.1 Access Control 366
16.3.2 Default Files 368
16.4 Indexed and Sequential Files 369
16.5 Text Files 372
16.5.1 Overloading PUT and GET 372
16.5.2 Generic Treatment of Numeric and Enumeration Types 373
16.5.3 Use of Default Parameters for Formatting 374
16.6 Exceptions and Renaming 377
16.7 Low Level Input-Output 378
16.8 Conclusion 379

Bibliography 381

Index 391

IX

Introduction and Preface

1. Introduction and Preface

1.1 Goals

This document, the Rationale for the design of the Ada programming language, has evolved
4 over a number of years.

A first version appeared in 1978 as the Rationale for the Green programming language, and
this was revised in 1979 at the time that Green was finally selected as Ada, The purpose of
these documents was to explain the motivation for the language design, and to justify and
defend its position against the other competitive languages and the Ironman (later Steelman)
requirements. No corresponding document was written in 1980 when Ada was proposed as a
standard, nor in January 1983 when Ada finally became both an ANSI and Military Standard.
The present version completes and revises a draft issued in January 1984 and which was the
subject of public review.

The goal of these documents has also evolved. The original goal was both motivational and
defensive; a major concern was implementability (in potentially controversial areas such as
overload resolution) especially since there were no compilers then in existence. This last
concern is now substantially reduced since implementability is well demonstrated by a
number of production quality compilers.

Equally the goal is not to document and justify every language design decision: it would be
difficult to replace the archive containing the hundreds of study notes and thousands of
comments produced between 1977 and 1983.

The present goal is thus now more inspirational: to give the reader a feel for the spirit of the
language, the motives behind the key features and to create the basis for understanding how
they fit together both globally as viewed from the outside and in detail as viewed from the
inside; above all to impart an appreciation of the main architectural lines of the language and
its overall philosophy. It is only by knowing this philosophy that a real understanding for the
detail will be obtained.

2 Ada Rationale

It is now 1986, and it may well be asked why this ultimate Rationale has taken so long to
emerge. We must admit that the main reason is simply that we have been deeply involved
over the past years in a number of activities aimed at creating an infrastructure that would
ensure the success of the Ada language, - in particular, the development of training material
and compilers. The success of Ada has now relieved that pressure and allowed us to complete
the work started in 1978, and to make available what we hope will be an important addition
to the Ada literature.

1.2 Structure

This document is divided into chapters covering different aspects of the language. Most
chapters correspond to chapters of the Reference Manual. Expressions and statements are
here regrouped in a single chapter, since the subject is fairly classical. Conversely, in view of
the importance of the subjects, special chapters are devoted to numeric types, access types,
and derived types, in addition to the chapter on types. The chapters of the Rationale are
fairly independent (at the cost of some repetition) and can be read in any order.

Most chapters of the Rationale have a common structure. They start with an introduction to
the topic discussed. An informal description of the language features follows. This
description is made in terms of examples chosen to reflect the major classes of uses of the
features considered.

We believe that the reader will get the spirit of the language reading these examples. They
should help the development of an intuition for programming style in the Ada language.

A discussion of the technical issues follows, or in some cases is interspersed with the
informal description. Such discussions cover the major design decisions, their justification,
and the interactions with other aspects of the language.

1.3 Acknowledgements

We would like to take this opportunity to acknowledge the contributions of several others to
the Ada Rationale: Jean-Raymond Abrial, Bernd Krieg-Brueckner, Jean-Claude Heliard,
Henry Ledgard, Ian Pyle, Olivier Roubine, Steve Schuman, Stan Vestal, and Brian Wichmann
contributed to the 1978 and 1979 initial versions. Brian Wichmann also contributed to the
1984 draft.

Other significant contributions were derived from the Language Study Notes by Jean-Loup
Gailly and Paul Hilfinger and by comments from the Distinguished Reviewers.

i:

ERRATA

The United States Department of Defense has included this errata sheet to clarify
certain aspects and improve the accuracy of The Rationale for the Design of the
Ada Programming Language as it was delivered to the Ada Joint Program Office by
the authors. No copyright is claimed in the clarification of the basic document.

Page For Read

1, line 3 Ada programming language, Ada Programming Language
(ANSI/MIL-STD-1815A),

57, line 14 (8,1,1,1,1) (1,1,8,1,1)

65, line 26 requires require

89, line 7 one negative one extra negative

97, line 35 above the decimal before the decimal

97, line 36 below the decimal after the decimal

126, lines 12 to 14 :=O; :Z0.0;

176, lines 37 to 38 division declared in the construction declared
visible part with two in the visible part
parameters of type with two parameters,
INTEGER. Hence the integer one of type INTEGER
literals 3 and 31 are and one of type
implicitly converted to POSITIVE. Hence the
this type and the division integer literals 3 and
is applied 31 are implicitly

converted to the
respective type and
the construction is
applied.

195, line 31 program procedure

218, line 22 to 23 named common "named COMMON"

220, line 1 following example: following example:
procedure DEMO is

220, line 31 end P; end P;
begin

end DEMO.

221, line 26 variable in object that contains

Ea e For Read

226, line 20 two integers one integer and one
positive number,

233, line 11 (LEFT, RIGHT: INTEGER) (LEFT: INTEGER; RIGHT:
POSITIVE)

248, line 28 (E); E;

250, line 12 limited private limited private;

250, line 19 BOOLEAN BOOLEAN;

252, line 17 -- default maximum length -- default maximum length
-- where the type REAL is any
-- properly declared real type

265, line 28 X, X

318, line 9 SINGULAR: exception; SINGULAR: exception;
--declaration of
procedures READ and PRINT
used below

320, line 20 function DIVISION (A, B: function DIVISION (A, B:
REAL) return REAL is REAL) return REAL is

--the type REAL is any
--properly declared real type

323, line 1 procedure APPLICATION is with TABLEMANAGER;

procedure APPLICATION is

328, line 19 SOMEITEM THING

328, line 21 out ITEM in out ITEM

330, lines 27 to 28 when NAME_ERROR=> null; when NAMEERROR 0> null;
end; end;

333, add at top -- Assume that all that follows is in the same
-- declarative region of some enclosing procedure

354, line 5 this wretched data type this data type

358, line 3 and 28 set system mask set system mask

360, lines 12 to 15 generic generic
type SOURCE is limited type SOURCE is limited
private; private;
type TARGET is limited type TARGET is limited
private; private;

function function

Page For Read

360, line 15 TARGET; A program TARGET;

A program

370, line 6 FILEMODE FILETYPE

370, line 11 limited; this limited. This

371. insert after
line 18 The procedure SETINDEX sets the current index of the

given file to the index value, which may exceed the current
size of the file. If the given index value exceeds the
current size of the file, item-sized "gaps" will
occur which are undefined items.

371, lines 19 to 20 index value and SET INDEX index value. The function
enables it to be set. The SIZE gives the number of
function SIZE gives the items in the file, which
number of items in the file includes both defined and
(defined or undefined), undefined items.

376 line 26 we have we have:

RATIONALE

FOR THE DESIGN OF THE

Ada R

PROGRAMMING LANGUAGE

Jean D. Ichbiah
John G.P. Barnes

Robert J. Firthr
Mike Woodger

HONEYWELL [1
Systems and Research Center

MN65-2100
3660 Technology Drive .
Minneapolis, MN 55418

and r

ALSYS .- ,

29 Avenue de Versailles
78 170 La Celle Saint Cloud ~ L

France__ _

R Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

Copyright C 1986 owned by the United States Government as represented by the Under
Secretary of Defense, Research and Engineering. All rights reserved. Permission to publish
must be obtained from the Ada Joint Program Office, OUSDRE(R&AT), The Pentagon,
Washington, D.C. 20301. U.S.A.

fi.,
Ai

i7

Table of Contents:

1 Introduction and Preface

1.1 Goals
1.2 Structure 2
1.3 Acknowledgements 2

2 Lexical and Textual Structure

2.1 Lexical Structure 5
2.2 Textual Structure 9

3 Classical Programming

3.1 Simple Declarations: Variables and Constants 17

3.2 Declarative Parts - Linear Reading 18
3.3 Multiple Declarations 20
3.4 Names 22

3.5 Aggregates 23
3.6 Expressions 25

3.7 Statements 27

3.8 Assignment Statements - The Ada Model of Time 27
3.9 If Statements 30
3.10 Short-Circuit Control Forms 30

3.11 Case Statements 31

3.12 Loop Statements 35

f !

4 Types

4.1 Introduction 37
4.2 The Concept of Type 40
4.3 Type Equivalence 42
4.4 Constraints and Subtypes 44
4.4.1 Constraints 44
4.4.2 Subtypes 45
4.4.3 Evaluation of Constraints 46
4.5 Array Types 48
4.5.1 Slices and Sliding 50
4.5.2 Array Aggregates 54
4.5.3 Equivalence and Explicit Conversions 58
4.6 Record Types 61
4.6.1 Equivalence 62
4.6.2 Default Initialization of Record Components 63
4.7 Discriminants 65
4.7.1 Record Types with Variants 65
4.7.2 Discriminant Constraints - Record Subtypes 67
4.7.3 Denoting Components of Variants 68
4.7.4 Initialization of Discriminants 70
4.7.5 Discriminants and Type Composition 72
4.8 Mutability 76
4.8.1 The Case Against Static Mutability 78
4.8.2 Implementation Considerations 82

5 Numeric Types'

5.1 Introduction 85
5.1.1 Floating Point: The Problems 85
5.1.2 Fixed Point The Problems 86
5.1.3 Overview of Numerics in Ada 88
5.2 The Integer Types 91
5.3 The Real Types 92
5.3.1 Floating Point Types 94
5.3.2 Fixed Point Types 97
5.3.3 A Semantic Model for Approximate Computation 102
5.4 Implementation Considerations 105
5.5 Conclusion 108

IV

6 Access Types

6.1 Introduction 109
6.2 Overview of the Issues 109
6.2.1 Conceptual Aspects 109
6.2.2 Reliability, Efficiency, and Implementation Issues 112
6.2.3 Goals for a Formulation of Access Types 114
6.3 Presentation of Access Types 115
6.3.1 Declaration of Access Types and Subtypes 115
6.3.2 Collections of Dynamically Allocated Objects 116
6.3.3 Access Variables, Allocators, and Access Constants 117
6.3.4 Component Selection, Indexed Components, and Value Assignments 119
6.3.5 Recursive Access Types 120
6.3.6 Access Objects as Parameters 122
6.3.7 Storage Management for Access Types 123

7 Derived Types

7.1 Introduction 125
7.2 Informal Introduction to Deriv-d Types 126
7.3 Simple Strong Typing 131
7.4 The Explanation of Numeric Types 140
7.5 The Ability to Inherit Literals 140
7.6 The Construction of Private Types 141
7.7 Achieving Transitivity of Visibility 143
7.8 Change of Representation 146
7.9 Conclusion - ,chieving Copies in Ada 149

8 Subprograms

8.1 Subprogram Declarations and Subprogram Bodies 153
8.2 Parameter Modes 154
8.2.1 Efficiency Issues of Parameter Passing Mechanisms 155
8.2.2 The Effect of Parameter Passing Mechanisms for Access Types 157
8.2.3 The Effect of Parameter Passing Mechanisms for Composite Types 158
8.2.4 The Ada Solution for Parameter Passing 162
8.3 Parameter Passing Notations 164
8.4 Function Subprograms 166

V

9 Packages

9.1 Motivation 169
9.2 Informal Introduction to Packages 170
9.2.1 Named Collections of Entities 171
9.2.2 Groups of Related Subprograms 173
9.2.3 Private Types 177
9.3 Technical Issues 180
9.3.1 Visibility Control and Information Hiding 181
9.3.2 Guaranteeing Software Components 182
9.3.3 Influence of Separate Compilation on the Design of Packages 183
9.3.4 Initialization of Packages 184
9.3.5 Note on Visibility 184
9.3.6 Availability of the Properties of Types Defined Within Packages 186
9.3.7 Initialization of Objects of Private Types 187
9.3.8 Private Types with Discriminants 188
9.4 Summary and Conclusion 190

10 Separate Compilation and Libraries

10.1 Introduction 191
10.2 Presentation of the Separate Compilation Facility 192
10.2.1 Bottom-Up Program Development 193
10.2.2 Hierarchical Program Development 196
10.2.3 Compilation Order 199
10.2.4 Recompilation Order 200
10.2.5 Execution of a Main Program 202
10.2.6 The Pragma ELABORATE 202
10.3 Methodological Impact of Separate Compilation 203
10.4 The Program Library 204
10.5 The Implementation of Separate Compilation 206
10.5.1 Principle of Separate Compilation 206
10.5.2 Details of the Actions Performed by the Compiler 207
10.5.3 Treatment of Package Bodies 209
10.5.4 Summary of the Information Contained in a Library File 209
10.6 Summary and Conclusion Z10

11 General Program Structure - Visibility and Overloading

11.1 Introduction 213
11.2 Program Structure 213
11.3 Visibility Rules 216
11.3.1 Basic Visibility Model 216
11.3.2 Naming Conventions: Expanded Names and Use Clauses 219
11.3.3 Visibility Rules for Record Types 221

VI

11.3.4 Renaming 222
11.4 Overloading 224
11.4.1 Overloading of Operators 224
11.4.2 Overloading of Names 226
11.4.3 Overloading of Literals 227
11.5 Overload Resolution 230
11.5.1 Context of Overload Resolution 231
11.5.2 Information Used to Resolve Overloading 232
11.5.3 Ambiguity 234

12 Generic Units '

12.1 Introduction 235
12.2 Informal Presentation of Generic Units 237
12.2.1 Generic Formal Parts 237
12.2.2 Generic Instantiations 238
12.2.3 Private Types as Generic Formal Types 240
12.2.4 Other Forms of Generic Formal Types 241
12.2.5 Default Parameters 246
12.3 The Use of Generic Units 247
12.3.1 Examples of Generic Functions 247
12.3.2 An Example of a Generic Package 250
12.3.3 A Generic Package with Tasks 254
12.3.4 A More Complicated Example 256
12.4 Rationale for the Formulation of Generic Units 261
12.4.1 Explicit Instantiation of Generic Units 261
12.4.2 Generic Formal Parameters: The Contract Model 263
12.4.3 Default Generic Parameters 267

13 Tasking

13.1 Introduction 269
13.2 Presentation of the Tasking Facility 270
13.2.1 Tasks: Textual Layout 270
13.2.2 Task Execution 271
13.2.3 Visibility Rules 275
13.2.4 Entries and the Accept Statement 275
13.2.5 The Select Statement 278
13.2.6 Timing 285
13.2.7 Timed and Conditional Communication 287
13.2.8 Interrupts 289
13.2.9 Task Types 289
13.2.10 The Terminate Alternative 293
13.2.11 Families of Entries and Scheduling 294
13.3 Rationale for the Design of the Rendezvous Facilities 303

II

13.3.1 Early Primitives 303
13.3.2 The Rendezvous Concept 306
13.4 Packages and Taskl- 310

14 Exception Handling

14.1 Introduction 311
14.2 Presentation of Exception Handling in Ada 312
14.2.1 Declaration of Exceptions 312
14.2.2 Exception Handlers 313
14.2.3 The Raise Statement 314
14.2.4 Association of Handlers with Exceptions 314
14.2.5 Raising the Same Exception Again 317
14.2.6 Suppressing Checks 317
14.2.7 Order of Exceptions 317
14.3 Examples 318
14.3.1 Matrix Inversion 318
14.3.2 Division 320
14.3.3 A File Example 321
14.3.4 A Package Example 322
14.3.5 Example of Last Wishes 323
14.4 Tasks and Exceptions 325
14.4.1 Exceptions During Task Activation 325
14.4.2 Exceptions Raised During Communication Between Task 326
14.4.3 Abnormal Situations in an Accept Statement 327
14.4.4 Example of Exceptions in a Rendezvous 329
14.5 Technical Issues 331
14.5.1 Exceptions Raised During the Elaboration of Declarations 332
14.5.2 Propagation of an Exception Beyond its Scope 332
14.5.3 Suppression of Checks 334
14.5.4 Implementation of Exception Handling 335
14.5.5 The Case Against Asynchronous Exceptions 336
14.5.6 Proving Programs with Exceptions 336

15 Representation Clauses and Machine Dependences

15.1 The Separation Principle 339
15.2 Types and Data Representation 340
15.3 Multiple Representations and Change of Representation 341
15.3.1 A Canonical Example of Changes of Representation 341
15.3.2 One Type - One Representation Principle 342
15.3.3 Explicit Type Conversion and Change of Representation 343
15.3.4 Implementation of Representation Changes 345
15.4 Presentation of the Data Representation Facility 346
15.4.1 Representation Pragmas 346

Vill

15.4.2 Length Clauses 346
15.4.3 Record Representation Clauses 348
15.4.4 Address Clauses 350
15.4.5 Enumeration Representation Clauses 350
15.5 Enumeration Types with Noncontiguous Representations 351
15.5.1 Assignment and Comparison with Noncontiguous Enumeration Types 351
15.5.2 Indexing and Case Statements with Noncontiguous Enumeration Types 352
15.5.3 Iteration Over Noncontiguous Enumeration Types 352
15.5.4 Character Types 353
15.6 Configuration Specification and Environment Enquiries 354
15.6.1 The Package System 354
15.6.2 Pragmas for Configuration Specification 356
15.6.3 Representation Attributes 356
15.6.4 Configuration Specification and Conditional Compilation 357
15.7 Interface with Other Languages 357
15.8 Unchecked Conversions 360

16 input-Output .

16.1 Introduction 363
16.2 Basic Requirements 364
16.3 Designation of Files 365
16.3.1 Access Control 366
16.3.2 Default Files 368
16.4 Indexed and Sequential Files 369
16.5 Text Files 372
16.5.1 Overloading PUT and GET 372
16.5.2 Generic Treatment of Numeric and Enumeration Types 373
16.5.3 Use of Default Parameters for Formatting 374
16.6 Exceptions and Renaming 377
16.7 Low Level Input-Output 378
16.8 Conclusion 379

Bibliography 381

Index 391

Ix

Introduction and Preface 1

1. Introduction and Preface

1.1 Goals

This document, the Rationale for the design of the Ada programming language, has evolved
over a number of years.

A first version appeared in 1978 as the Rationale for the Green programming language, and
this was revised in 1979 at the time that Green was finally selected as Ada. The purpose of
these documents was to explain the motivation for the language design, and to justify and
defend its position against the other competitive languages and the Ironman (later Steelman)
requirements. No corresponding document was written in 1980 when Ada was proposed as a
standard, nor in January 1983 when Ada finally became both an ANSI and Military Standard.
The present version completes and revises a draft issued in January 1984 and which was the
subject of public review.

The goal of these documents has also evolved. The original goal was both motivational and
defensive; a major concern was implementability (in potentially controversial areas such as
overload resolution) especially since there were no compilers then in existence. This last
concern is now substantially reduced since implementability is well demonstrated by a
number of production quality compilers.

Equally the goal is not to document and justify every language design decision: it would be
difficult to replace the archive containing the hundreds of study notes and thousands of
comments produced between 1977 and 1983.

The present goal is thus now more inspirational: to give the reader a feel for the spirit of the
language, the motives behind the key features and to create the basis for understanding how
they fit together both globally as viewed from the outside and in detail as viewed from the
inside; above all to impart an appreciation of the main architectural lines of the language and
its overall philosophy. It is only by knowing this philosophy that a real understanding for the
detail will be obtained.

2 Ada Rationale

It is now 1986, and it may well be asked why this ultimate Rationale has taken so long to
emerge. We must admit that the main reason is simply that we have been deeply involved
over the past years in a number of activities aimed at creating an infrastructure that would
ensure the success of the Ada language, - in particular, the development of training material
and compilers. The success of Ada has now relieved that pressure and allowed us to complete
the work started in 1978, and to make available what we hope will be an important addition
to the Ada literature.

1.2 Structure

This document is divided into chapters covering different aspects of the language. Most
chapters correspond to chapters of the Reference Manual. Expressions and statements are
here regrouped in a single chapter, since the subject is fairly classical. Conversely, in view of
the importance of the subjects, special chapters are devoted to numeric types, access types,
and derived types, in addition to the chapter on types. The chapters of the Rationale are
fairly independent (at the cost of some repetition) and can be read in any order.

Most chapters of the Rationale have a common structure. They start with an introduction to
the topic discussed. An informal description of the language features follows. This
description is made in terms of examples chosen to reflect the major classes of uses of the
features considered.

We believe that the reader will get the spirit of the language reading these examples. They
should help the development of an intuition for programming style in the Ada language.

A discussion of the technical issues follows, or in some cases is interspersed with the
informal description. Such discussions cover the major design decisions, their justification,
and the interactions with other aspects of the language.

1.3 Acknowledgements

We would like to take this opportunity to acknowledge the contributions of several others to
the Ada Rationale: Jean-Raymond Abrial, Bernd Krieg-Brueckner, Jean-Claude Heliard,
Henry Ledgard, Ian Pyle, Olivier Roubine, Steve Schuman, Stan Vestal, and Brian Wichmann
contributed to the 1978 and 1979 initial versions. Brian Wichmann also contributed to the
1984 draft.

Other significant contributions were derived from the Language Study Notes by Jean-Loup
Gailly and Paul Hilfinger and by comments from the Distinguished Reviewers.

Introduction and Preface 3

We are also indebted to the comments on the 1984 draft from the Ada Europe Review Group
organized by Kit Lester, the comments by Henry Dancy and Vincent Amiot, and the
dedicated technical support of Marion Myers.

The Ada Rationale was developed by Alsys and Honeywell under a contract from the United
States Government (Ada Joint Program Office).

Jean D. Ichbiah
John G.P. Barnes
Robert J. Firth
Mike Woodger

Lexical and Textual Structure 5

2. Lexical and Textual Structure

A program is a text that specifies actions to be performed by a computer.

Programs are written by human programmers, and read by their authors or by other
programmers for checking and maintenance purposes; they are also processed by compilers
and other automatic tools. The need to accommodate these various forms of communication
permeates every level of consideration of a programming language, including the most
immediate levels where we are only concerned with the physical appearance of a program
text.

The lexical and textual structures of a programming language are of course important for
ease of program compilation, and for compilation-time detection of errors. The importance
of lexical and textual structures is even greater for ease of reading and understanding
programs - in particular, for detection of logical errors - and for ease of teaching the
language. We believe that our understanding of programs can be greatly simplified if our
intuition is able to rely on textual forms that convey the logical structure of the program.
This is the justification for giving major consideration to readability and teachability in the
design of lexical and textual structures in Ada; moreover, special attention has been devoted
to structural analogies.

2.1 Lexical Structure

A program is written in characters forming lines on a printed page. The arrangement on the
page is primarily to assist the human reader, and consequently is mainly in free format. The
allowed characters belong to the ISO (ASCII) character set, and the text of a program may
contain both upper case and lower case letters. For portability reasons, it is possible to write
any program in a 56 character subset of the ISO character set.

On a higher level than that of characters, a program is considered to consist of lexical
elements. Both the mechanical compiler and the human interpreter of programs will tend to
work in lexical elements, so it is important that these elements should be clearly specified.
Lexical elements are clearly delimited and may not straddle line boundaries - a restriction
that assists human reading and helps compilers to recover after having detected an error.

6 Ada Rationale

The lexical elements are:

" Identifiers, including those for reserved words and attribute designators

" Single-character delimiters and two-character compound delimiters

" Numeric literals: integer literals and real literals

" Character literals and string literals

Each literal is a lexical element that stands for a value, namely the value literally
represented. for example, 10 and IEI are two integer literals which both stand for the
integer value ten. In addition, a program text can include elements that have no influence on
the meaning of the program but are included as information and guidance for the human
reader or for the compiler. These are:

* Comments

" Pragmas

Identifiers start with a letter which may be followed by a sequence of letters and digits In
addition, an underline character may appear between two other characters of an identifier.
This underline is significant and plays the role of the space in ordinary prose (but without
breaking the integrity of the identifier). The need for such an underline is seen from good
choices of names such as BYTES PER WORD rather than BYTESPERWORD. Furthermore
the significance of the underline makes SPACE _PERSON a different identifier from
SPACEPERSON or SPACEPERSON and ANYLONGRIP different from
ANYLONGRIP.

Reserved words are special identifiers that are reserved for special significance in the
language. There are 63 such words. Many of them play an important role in the definition of
the overall syntax of the major program units of the language, for example:

procedure Is begin end

Other reserved words play a syntactic role at a more detailed level, for example:

constant in out range

Finally, seven of them are used as operators. These are the reserved words

and or xor not abs rem mod

Reserved words other than operators cannot be redeclared, and operators can only be
redeclared as operators and with the same precedence. Hence programmers cannot write
obscure programs by redefining the meaning of words that play an important syntactic role
in the definition of the structure of Ada texts. Similarly, declarations written by
programmers cannot affect overall properties of the syntax, for example, the fact that if two
adjacent lexical elements are identifiers, one of them (at least) must be a reserved word.

